Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.
نویسندگان
چکیده
Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1(R/R)). These mice and littermate controls (Col1a1(+/+)) were exposed to hypoxia for 10 days; some were treated with β-aminopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed, and collagen content and cross-linking were measured. In Col1a1(+/+) mice, HPH increased both collagen content and cross-linking, and BAPN treatment prevented these increases. Similar trends were observed in Col1a1(R/R) mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1(+/+) mice, HPH increased PA stiffness and damping capacity, and these increases were impeded by BAPN treatment. In Col1a1(R/R) mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH.
منابع مشابه
Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension.
Proximal pulmonary artery (PA) stiffening is a strong predictor of mortality in pulmonary hypertension. Collagen accumulation is mainly responsible for PA stiffening in hypoxia-induced pulmonary hypertension (HPH) in mouse models. We hypothesized that collagen cross-linking and the type I isoform are the main determinants of large PA mechanical changes during HPH, which we tested by exposing mi...
متن کاملThe role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension.
Hypoxic pulmonary hypertension (HPH) causes extralobar pulmonary artery (PA) stiffening, which potentially impairs right ventricular systolic function. Changes in the extracellular matrix proteins collagen and elastin have been suggested to contribute to this arterial stiffening. We hypothesized that vascular collagen accumulation is a major cause of extralobar PA stiffening in HPH and tested o...
متن کاملValidation of an arterial constitutive model accounting for collagen content and crosslinking.
UNLABELLED During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) increase in both thickness and stiffness. Collagen, a component of the extracellular matrix, is mainly responsible for these changes via increased collagen fiber amount (or content) and crosslinking. We sought to differentiate the effects of collagen content and cross-linking on mouse PA mechanic...
متن کاملThe role of collagen synthesis in ventricular and vascular adaptation to hypoxic pulmonary hypertension.
Pulmonary arterial hypertension (PAH) is a rapidly fatal disease in which mortality is typically due to right ventricular (RV) failure. An excellent predictor of mortality in PAH is proximal pulmonary artery stiffening, which is mediated by collagen accumulation in hypoxia-induced pulmonary hypertension (HPH) in mice. We sought to investigate the impact of limiting vascular and ventricular coll...
متن کاملLysyl oxidases play a causal role in vascular remodeling in clinical and experimental pulmonary arterial hypertension.
OBJECTIVE Pulmonary vascular remodeling, the pathological hallmark of pulmonary arterial hypertension, is attributed to proliferation, apoptosis resistance, and migration of vascular cells. A role of dysregulated matrix cross-linking and stability as a pathogenic mechanism has received little attention. We aimed to assess whether matrix cross-linking enzymes played a causal role in experimental...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomechanics and modeling in mechanobiology
دوره 11 1-2 شماره
صفحات -
تاریخ انتشار 2012